
Effects of Centralized Population Initialization
in Differential Evolution

Hojjat Salehinejad and Shahryar Rahnamayan, Senior Member, IEEE
Department of Electrical, Computer, and Software Engineering University of Ontario Institute of Technology

Oshawa, Ontario, Canada
{hojjat.salehinejad, shahryar.rahnamayan}@uoit.ca

Abstract—Differential evolution (DE) is one of the highest
performance, easy to implement, and low complexity population-
based optimization algorithms. Population initialization plays an
important role in finding better candidate solution and faster
convergence of the population to a global optimum. It has been
shown in the literature that large population sizes for large-
scale problems necessarily does not show a statistically significant
performance improvement over medium size population. In this
paper, we emphasise on importance of population initialization
and discuss effects of using centroid-based population initializa-
tion in DE, with focus on micro-DE (i.e. DE with small popula-
tion size). Experimental results for high and low dimensional
problems with small and standard population sizes on CEC
Black-Box Optimization Benchmark problems 2015 (CEC-BBOB
2015) show centroid initialization can increase performance of DE
algorithm, compared to the conventional initialization method.

I. INTRODUCTION

Population-based algorithms are among popular global opti-
mization methods [1]. Utilization of more than one individual
in these methods helps the algorithm to have better exploration
and collaboration capability to find optimal solutions. Differ-
ential evolution (DE) algorithm is one of the pioneer methods
in this category. DE is easy to implement and modify [2]. It has
presented extraordinary performance in solving challenging
benchmark and real world problems [2], [3].

DE is consisted of four major steps which are population
initialization, mutation, crossover, and selection. Contribution
of these steps to overall algorithm performance is dependent
on appropriate setting of control parameters. Population size,
mutation scale factor, crossover rate, and mutation scheme are
among the important ones to single out.

Enhanced population initialization is a key factor in perfor-
mance of DE. A better initialization technique can enhance its
exploration ability. On the other side, inappropriate initializa-
tion can degrade searching performance.

A parameter study of initialization methods for large-scale
problems is provided in [4]. Many research works have been
conducted on population initialization enhancement of DE.
Most of the methods are focused on uniform initialization
for low dimensional problems. Importance of initialization is
studied in [5] for large-scale optimization. This work provides
a parameter analyses and comparative study on different DE
algorithms for functions with 905 and 1000 decision variables
[5]. The obtained results show that utilizing large population
sizes for large-scale problems necessarily does not provide
statistically significant performance improvement.

The conventional way to deal with large-scale problems
is increasing the population size as the problem dimension
increases. However, the population size directly affects the
computational cost of DE and developer should be aware
of limits [5]. Small population size decreases the chance
of exploration of promising regions on the landscape. A
vectorized random mutation scale factor is proposed in [2] and
[6] to enhance the exploration capability of DE algorithm with
small population size. DE algorithm with a small population
size is called micro-DE, which has much less computational
cost comparing to standard population size DE. It has been
utilized for 3D localization of sensor in [7].

In addition to the mutation scale factor [2], studies show
that proper population initialization increases the probability
of finding global solution [8], increases robustness [8], reduces
the computational cost [9], and enhances the solution quality
[10], [6]. In this paper, we visualize and discuss centroid-
based population initialization for DE (CIDE) and its micro
version. The idea of centralization is to initialize the population
uniform randomly within a certain boundary of the original
population boundary. For example, if the initial distribution of
population is allowed within the range of [a, b], the centroid
method initializes them within a central percentile of the
boundaries a and b. This technique starts the search from
positions which are likely to be closer to the global optimal
solution. The general assumption is that the closer is an indi-
vidual to solution, its fitness value is better; this assumption
is true for all non-deceptive problems.

Next section provides a review on initialization techniques
utilized in DE. Section III provides a short introduction to
DE. The centroid-based population initialization is studied in
Section IV. The experimental results are discussed in Section
V and finally the paper is concluded and future remarks are
presented in Section VI.

II. RELATED WORKS

The initialization techniques in evolutionary algorithms are
categorized in terms of randomness, compositionality, and
generality [5].

Pseudo-random number generators (PRNGs) are the most
widely used population initialization techniques [9], [10]. It
is claimed that these methods are not the best available
options for population initialization of DE when dealing with
large-scale problems [4], [11]. Chaotic number generators

978-1-5090-4240-1/16/$31.00 ©2016 IEEE



(CNGs) improve the randomness and uniformity of the initial
population [12]. Ergodicity, randomness, and unpredictability
are the main characteristics of chaotic systems [13]. In order
to produce a chaotic sequence, a proper map for the variable
xki,j at iteration k is required, such as a tent map:

xk+1
i,d =

{
µxki,d xki,d <

1
2

µ(1− xki,d) xki,d ≥ 1
2

, (1)

where i and d represent the individual and dimension, respec-
tively. If the parameter µ = 2 and x0i,d ∈ (0, 1), this map
produces chaotic sequences [4].

The DE is hybridized with non-linear simplex method with
uniform random numbers for population initialization, named
NSDE [14]. This method generates NP individuals and uses
Nelder-Mead Simplex (NMS) to generate the same number
of individuals from previously generated individuals [14]. In
[15], the NM-DE method generates NP random individuals
Xi, [16], and then computes centroid of the top Q individuals
as:

X̄ =

Q∑
q=1

Xq

Q
. (2)

Then, NP − Q new points are generated using the simplex
method and the centroid X̄ [15], [16]. This model applies a one
point shrinking until the point gets a better value. The same
idea is utilized in [16] for the JADE algorithm, an adaptive
DE algorithm, by generating 3×NP random individuals and
calculating their centroids as:

Xi =
X1 + X2 + X3

3
, (3)

until NP centroids are computed to use as initial population
[16].

Deterministic uniform number generator methods focus on
uniform distribution rather than randomness of points on the
problem search space. Some approaches come with theoretical
upper-bounds on the non-uniformity of the points [17]. The
population is sparse in high-dimensional search spaces. It was
assumed that uniform distribution of initial points can help the
algorithm [10], [18]; however, the practice shows that uniform
distribution of initial points may not perform as expected in
high dimensional search spaces [19], [8], [20].

Some initialization methods evaluate an objective function
to initialize the population [3]. Some of these methods are
quadratic interpolation [21], non-linear local search [22], [23],
and smart sampling [24]. A local-global selection method to
generate high quality initial individuals for job-shop schedul-
ing is proposed in [25]. Another population initialization
method using local search method based on hill-climbing
technique is proposed in [26]. A comprehensive review on
these methods is presented in [5].

Prior knowledge with a low computational cost can assist
to generate proper initial points. Opposition-based learning
(OBL) has introduced a new direction in machine learning and
particularly population-based algorithms [3], [27]. The simple
but effective OBL method in population initialization considers

a set of randomly generated points and their opposites. It eval-
uates the generated points using the corresponding objective
function and selects a subset of fitted points as the initial
population [28]. This model is initially developed for DE
algorithm, called opposition-based DE (ODE). In [29], [28],
Monte-Carlo and mathematical methods are used to discuss
why opposite points are working better than the uniform
random points.

The OBL computes opposite of an individual i with respect
to the original individual value xi,d as:

x̃i,d = xmin
d + xmax

d − xi,d (4)

where xmin
d and xmax

d are the lower and upper boundaries
on dimension d, respectively [3]. Quasi-opposite point is
another version of OBL scheme for population initialization
and generation jumping, which randomly generates points
between a middle point and its corresponding opposite [30].

The idea of using centroid in DE and simulated anneal-
ing is proposed in the literature [31], [19]. The idea of
utilizing centroid to calculate opposite points is utilized in
ODE recently, called centroid opposition-based computation
(COBC) [32], [33]. The COBC uses the center of gravity of
the population, instead of min and max points, to consider
the entire population in its opposition scheme. Definition of
centroid is “the point where the centre of mass lies in a uniform
body” [33]. By considering the entire population of DE as
a discrete body, the unit mass is distributed. Experiments
show that centroid of population has special characteristics
which strengthen the learning process of the algorithm and
also involve the whole population in a better way [32].

III. DIFFERENTIAL EVOLUTION

DE is an effective population-based optimization algorithm
to solve a global optimization problem formalized as:

Minimize f(X),X = [x1, ..., xD] ∈ R, (5)

subject to:
gj(X) ≤ 0, for j = 1, ..., P, (6)

where xmin
d ≤ xd ≤ xmax

d for dimension d = 1, ..., D, P is
the number of constraints, and xmin

d and xmax
d indicate the

lower and upper bounds of the variable xd, respectively. DE
operates through four stages, described below, in order to find
a desired optimal solution.

A. Population Initialization

The population initialization phase initiates the search to-
wards the global optimum by having NP stage number of in-
dividuals in the population, D dimensional, uniform randomly
generated candidate solutions, which are known as initial
vectors. Population is subject to change over a limited number
of generations. It is customary to denote the population i at
generation g such as:

Xi,g = [x1,i,g, ..., xD,i,g], (7)



Xd1
min

Xd1
min

Xd1
max

Xd1
max

Xd2
min

Xd2
min

Xd2
max

Xd2
max

Fig. 1: Centroid boundaries on a two dimensional search space. Dimensions
are denoted by d1 and d2. The original search space (light grey square) refers
to the original boundaries of the dimensions. The centroid region (dark grey
square) refers to the centroid boundaries of the dimensions.

where g = 0, ..., G. During the initialization stage, the vector
xd,i,0 is initialized according to the following equation:

xd,i,0 = xmin
d + randi,d(0, 1)× [xmax

d − xmin
d ], (8)

where d = 1, .., D, i = 1, ..., NP , rand(0, 1) generates a
uniform random number in [0, 1], and xmin

d and xmax
d are the

lower and upper boundaries of the variable xd, respectively.

B. Mutation Operator

A mutation operator generates a vector known as a donor
vector Vi,g for each vector in the current population, identified
as a target vector. Although there are variant DE-mutation
schemes [3], [2], the classical version is DE/rand/1 given as

Vi,g = Xi
r1,g + F (Xi

r2,g − Xi
r3,g), (9)

where i = 1, ..., NP . Here, the indices r1, r2, r3 are mutually
exclusive integers chosen randomly from the set {1, ..., NP }.
Furthermore, the value of the amplification factor F of the
difference vector typically lies in the interval (0, 2].

C. Crossover Operator

By shuffling a donor vector with its associated target vector
to enhance the potential diversity of the population, this phase
results in a vector known as a trial vector Ui,g defined as
follows:

Ud,i,g =

{
vd,i,g, randi,d(0, 1) ≤ Cr or d = randd
xd,i,g, otherwise

,

(10)
where randi,d(0, 1) is the dth uniformly distributed random
number generated for the ith trial vector, Cr ∈ (0, 1) is a
constant crossover rate, and randd ∈ {1, ..., D} is a random
integer number, where ensures Ui,g inherits at least one
component from Vi,g .

D. Selection

Finally, this step leads to a new generation g + 1, which
is derived by having made the selection either to retain the
old solution xi,g or introduce a new candidate solution Ui,g

Algorithm 1: Centroid-based Initialized Differential Evolution
(CIDE)

1: Procedure CIDE
2: g = 0 // generation counter

// Initial Population Generation
3: for i = 1→ NP do
4: for d = 1→ D do
5: x̄min

d = xmin
d + 1−C

2
(xmax

d − xmin
d )

6: x̄max
d = xmax

d − 1−C
2

(xmax
d − xmin

d )
7: Xi,d = x̄min

d + rand(0, 1)× (x̄max
d − x̄min

d )
8: end for
9: Pg

i = Xi

10: end for
// End of Initial Population Generation

11: while (|BFV − V TR| > EV TR & NFC < NFCMax) do
12: for i = 1→ NP do

// Mutation
13: Select three random population vectors from Pg where

(i1 6= i2 6= i3 6= i)
14: F = 0.5 //mutation scale factor
15: for d = 1→ D do
16: Vi,d = Xi1,d + F (Xi2,d − Xi3,d)
17: end for

// End of Mutation
// Crossover

18: for d = 1→ D do
19: if rand(0, 1) < Cr or drand = d then
20: Ui,d = Vi,d

21: else
22: Ui,d = xi,d

23: end if
24: end for

// End of Crossover
// Selection

25: if f(Ui) ≤ f(Xi) then
26: X′i = Ui

27: else
28: X′i = Xi

29: end if
// End of Selection

30: end for
31: Xi = X′i, ∀i ∈ {1, ..., NP }
32: g = g + 1
33: Pg = {X1, ...,XNP }
34: end while

instead. For a minimization problem, the mentioned greedy
selection is defined as follows:

Xi,g+1 =

{
Ui,g, f(Ui,g) ≤ f(Xi,g)
Xi,g, f(Ui,g) > f(Xi,g)

, (11)

where i = 1, ..., NP . A comprehensive survey about DE is
presented in [34].

IV. CENTRALIZED POPULATION INITIALIZATION

The most common initialization method in DE algorithm
is random initialization with uniform distribution between the
lower xmin

d and upper xmax
d boundaries of each dimension

d. Population initialization close to the center of interval can
accelerate convergence of algorithm to a solution, particularly
in large-scale problems. The centroid interval C (as a portion
of whole interval) is selected from the range (0, 1). Figure 1



0 200 400 600 800 1000
Dimension

0

2

4

6

8

10

12

14
D
is
ta
n
ce

Centroid Region

Original Search Space Boundary

Fig. 2: Monte-Carlo experiment, comparing the average distance between
points generated uniformly in centroid region and original region from the
solution. The boundary of the original landscape is [0,1].

shows the lower x̄min
d and upper x̄max

d boundaries of the
centroid interval, which are calculated as:

x̄min
d = xmin

d +
1− C

2
(xmax

d − xmin
d ) (12)

and
x̄max
d = xmax

d − 1− C
2

(xmax
d − xmin

d ). (13)

Pseudo-code of the centroid population initialization is
presented in Algorithm 1. It is easy to implement, because just
modifying the conventional DE algorithm at the initialization
step is required. A Monte-Carlo simulation is conducted for
a search space range of [0,1] and a variety of search space
dimensions d ∈ {1, 2, ..., 1000}. The global solution is an
unknown random point in the search space (similar to a black-
box problem). The distance in original search space refers to
the average distance between distributed individuals in the
whole search space from the global solution. Similarly, for
the centroid region it refers to the average distance between
the uniform individuals generated in the central region and the
global solution. The Monte-Carlo simulation in Figure 2 shows
that as the dimensionality of the search space increases, the
average distance of random points generated in the centroid
region is less than the distance of the uniform points generated
in the original search space. Generating of initial population
within the centroid region enhances the search process of the
optimizer.

It is reported in [35], [31], and [19] that probability of
closeness to an unknown solution increases by moving the
individuals closer to the center of the search space. Monte-
Carlo simulation results presented in Figure 3 for dimensions
d ∈ {1, 100, 1000} show that as the search space dimension-
ality increases, the probability of closeness to the solution
improves as well [31]. This improvement is in its highest
value in the range [0.2,0.8] in a [0,1] search space interval.
For high dimensions, the probability is approaching to one and
the probability curve gets a flat shape [31], [19].

P
ro
b
ab
il
it
y

0.2 0.8

0.20.2

1.0
D=1000

D=100

D=1

Xd1
max

Xd1
min

Fig. 3: The graphs of Monte-Carlo simulations which present the probability
of closeness of candidate-solution (by considering set of points corner-to-
corner with the step-size of 0.01 in the search space) to an unknown solution
in the interval [Xmin

d1 , Xmax
d1 ], for various dimensions [35].

We can use Monte-Carlo method to measure the ratio
of generated uniform random points on a search space and
the centroid region. For 106 uniform randomly generated
points over the whole search space, the results show that
40, 19, ..., 1, 0, ..., 0 percentile of the points for problem di-
mensionalities d = 2, 3, ..., 15, 16, ..., 1000, are generated in
the centroid region. The percentile drops to zero at d = 16.
This shows that as the dimensionality of search space in-
creases, the chance of having points in the centroid region
is approaching zero exponentially. This is due to the volume
of centroid region hyper-cube, which is much smaller than
the original search space. By considering Vc as the volume of
centroid region hyper-cube and Vo as the volume of original
search space hyper-cube, we have:

Vc
Vo

=

D∏
d=1

(x̄max
d − x̄min

d )

D∏
d=1

(xmax
d − xmin

d )

, (14)

where as the search space dimension increases d → ∞
(i.e. toward large-scale search space), the ratio Vc/Vo → 0.
For example in a D = 1000 dimensional search space, if
[xmin

d , xmax
d ] = [0, 1] and [x̄min

d , x̄max
d ] = [0.2, 0.8], then

Vc/Vo = (1.41e − 222)/1 = 1.41e − 222 ≈ 0. The proposed
centroid-based initialization approach forces initialization pop-
ulation to have individuals in the centroid-region, which are
much closer to optimal solution compared to other uniform
individuals generated in the whole search space, particularly
in large-scale search spaces.

The centroid based initialization forces the solution toward
the centre of the domain. When the problem dimensionality
increases obviously exploitative approaches in DE perform
better than exploratory ones. This is because there is not
enough budget for achieving any seriously promising search
direction. Hence, one of the best strategies is to start exploiting
from the beginning. The budget exhaustion will occur before



premature convergence. In other words, the search space in-
creases exponentially with the dimensionality while the budget
we assign grows linearly with it.

V. EXPERIMENTAL RESULTS

In this section we evaluate the center-based population
initialization using the black-box optimization benchmark
(CEC-BBOB-2015) functions given at CEC-2015 [36]. The
benchmarking consists of 24 noise-free functions in five
classes which are separable functions (f1−f5), functions with
low or moderate conditioning (f6 − f9), functions with high
conditioning and uni-modal (f10−f14), multi-modal functions
with adequate global structure (f15 − f19), and multi-modal
functions with weak global structure (f20−f24). The functions
are shifted and the global solution is not at the zero point
(middle of interval).

The experiments are conducted for dimensions D =
{10, 100, 1000}, crossover rate Cr = 0.9, maximum number
of function calls NFCmax = 10, 000D, and error-value-
to-reach EV TR = 10e − 9. The population size is set to
NP = {6, 100}. The portion of centroid interval is set to
C = {0.4, 0.6, 1}.

The experiments are conducted for 30 independent runs
per function. The average of error value and corresponding
standard deviation are reported in Tables I to III. Summary of
the tables is presented in Table IV. The Wilcoxon statistical
test indicates the significant result, where ‘+’ symbol demon-
strates significance of DE with default initialization interval
(i.e. DE100) over proposed method with initialization intervals
[-40,40] and [-60,60] (i.e. CIDE40 and CIDE60, respectively).

The results in Table IV show that for small population size
NP = 6 and low problem dimension D = 10 the CIDE60 and
CIDE40 have better performance than DE100 with 21 success
out of 24 functions. We can observe similar performance for
D = {100, 1000}. As the population increases to 100 for
D = 10, we observe 14 neutral and 10 success counts. This
show as the population size increases for low dimensional
problems, the initialization interval has less effect on the
performance. This is mostly due to the increased diversity
in the population by large population size. This is while as
the dimensionality increases, we observe a high number of
success for both small and large population sizes. Because in
large dimentions the population size has minor impact on the
performance and exploitation has better result that exploration
[2].

Performance plots of the DE with initialization interval of
[-100,100] and CIDE with initialization intervals of [-40,40]
and [-60,60] in terms of average of error versus number of
function calls are presented in Figure 4. The first function
from each function class is selected for visualization, i.e. f1,
f6, f10, f15, and f20. The population size is NP = {6, 100}
and the problem dimension is d ∈ {10, 100, 1000}. The plots
are average of 30 independent runs. For some functions such
as f15 we observe almost flat error. This is mostly because
of the function structure multi-modal functions with adequate
global structure and pre-mature convergence of population.

We can observe performance of the CIDE40 and CIDE60 for
other functions. For example, f20 for D = 1000 show fast
convergence of the CIDE40 to a solution while it takes the
whole number of function calls for the DE100 to get close to
the found solution by centralized initialization.

VI. CONCLUSIONS AND FUTURE WORK

Population initialization, mutation, crossover, and selection
are major steps of differential evolution (DE) algorithms.
Proper setting of parameters in each stage has a direct impact
on performance of the algorithm. Conventionally, large pop-
ulation sizes are utilized for large-scale problem. However,
results show that this not only increases the computational
cost but also has a negative effect on the performance of the
algorithm. Our experiments show that a small population size
has competitive performance comparing to a standard popula-
tion size for very large-scale problems. Initializing population
within a specific interval of the dimension boundaries enhances
performance of algorithm at the initial evolution stages. This
centroid-based initialization technique has achieved superior
results versus conventional DE algorithm.

For the small population size six, as the search space di-
mension increases, the centroid-based initialization DE (CIDE)
method has better performance than the conventional uniform
random initialization approach. As the problem dimensionality
increases, regardless of the population size, CIDE shows better
performance. Regarding large population sizes, the CIDE
method has superior performance by almost being successful
in all the benchmark problems. The DE algorithm with large
population size has competitive performance with CIDE with
small population size for low-dimensional problems. However,
the CIDE has superior performance in large-scale problems
with the same setting.

For future works, it is important to study different centroid
intervals and effect of allowing more number of function calls
for evolution. The centroid initialization method should be
compared with other state-of-the-art methods for performance
assessment. The initialization should be tested in a different
class of test problems in order to analyze its limitations
and challenges. This technique is applicable for different
population-based algorithm, with the least required modifica-
tion in the algorithm. A comparison against similar methods
(other than uniform initialization) is necessary in the future.

REFERENCES

[1] H. Salehinejad and S. Talebi, “Dynamic fuzzy logic-ant colony system-
based route selection system,” Applied Computational Intelligence and
Soft Computing, vol. 2010, 2010.

[2] H. Salehinejad, S. Rahnamayan, H. R. Tizhoosh, and S. Y. Chen,
“Micro-differential evolution with vectorized random mutation factor,”
in Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE,
2014, pp. 2055–2062.

[3] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution,” Evolutionary Computation, IEEE Transactions
on, vol. 12, no. 1, pp. 64–79, 2008.

[4] B. Kazimipour, X. Li, and A. Qin, “Effects of population initialization
on differential evolution for large scale optimization,” in Evolutionary
Computation (CEC), 2014 IEEE Congress on. IEEE, 2014, pp. 2404–
2411.



0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e5

0.0

0.5

1.0

1.5

2.0

2.5
E
rr
o
r

1e4

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(a) f1;D = 10

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr
o
r

1e7

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(b) f6;D = 10

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e5

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r

1e9

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(c) f10;D = 10

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e5

0

1

2

3

4

5

6

E
rr
o
r

1e7

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(d) f15;D = 10

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr
o
r

1e7

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(e) f20;D = 10

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
rr
o
r

1e5

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(f) f1;D = 100

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e6

0

1

2

3

4

5

6

E
rr
o
r

1e8

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(g) f6;D = 100

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
rr
o
r

1e10

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(h) f10;D = 100

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e6

0.0

0.5

1.0

1.5

2.0

E
rr
o
r

1e11

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(i) f15;D = 100

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e6

0

1

2

3

4

5

E
rr
o
r

1e8

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(j) f20;D = 100

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr
o
r

1e6

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(k) f1;D = 1000

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e7

0

1

2

3

4

5

6

E
rr
o
r

1e9

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(l) f6;D = 1000

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e7

0.0

0.5

1.0

1.5

2.0

2.5

E
rr
o
r

1e11

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(m) f10;D = 1000

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr
o
r

1e14

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(n) f15;D = 1000

0.0 0.2 0.4 0.6 0.8 1.0
NFC 1e7

0

1

2

3

4

5

6

E
rr
o
r

1e9

CIDE40-NP6

CIDE60-NP6

DE100-NP6

CIDE40-NP100

CIDE60-NP100

DE100-NP100

(o) f20;D = 1000

Fig. 4: Error versus number of function calls for the CIDE with centroid intervals [-40,40] and [-60,60] and DE with default interval [-100,100] for objective
functions f1,f6,f10,f15, and f20. Population size is NP={6,100}, dimensions are D=10,100,1000.



TABLE I: Error and error standard deviation for population initialization intervals [-40,40], [-60,60], and [-100,100]; D=10 and NP={6,100}.

F
NP =6 NP =100

[-100,100] [-60,60] [-40,40] [-100,100] [-60,60] [-40,40]
Error Error W Error W Error Error W Error W

1 2.63e+03±1.95e+03 9.35e+02±8.29e+02 − 3.94e+02±3.15e+02 − 6.00e-09±2.93e-09 5.51e-09±2.59e-09 = 5.55e-09±2.41e-09 =
2 1.37e+07±2.71e+07 9.96e+06±2.61e+07 = 7.42e+06±1.67e+07 = 6.59e-06±4.53e-06 2.29e-06±2.44e-06 − 9.72e-07±7.07e-07 −
3 4.92e+04±5.92e+04 9.12e+03±1.39e+04 − 4.06e+03±4.07e+03 − 9.79e+00±4.51e+00 9.27e+00±3.70e+00 = 8.75e+00±3.95e+00 =
4 2.70e+05±2.28e+05 7.98e+04±7.74e+04 − 3.07e+04±3.23e+04 − 1.08e+01±4.41e+00 9.54e+00±5.23e+00 = 8.60e+00±3.76e+00 −
5 1.15e+01±2.40e+01 1.70e+01±3.20e+01 = 1.63e+01±3.43e+01 = 1.00e-08±0.00e+00 1.00e-08±0.00e+00 = 1.00e-08±0.00e+00 =
6 1.61e+05±4.82e+05 5.45e+03±3.17e+03 = 3.78e+03±2.52e+03 = 1.43e+02±1.38e+02 4.71e+01±2.54e+01 − 2.56e+01±1.34e+01 −
7 1.39e+04±1.05e+04 3.44e+03±2.54e+03 − 1.52e+03±1.18e+03 − 1.03e+00±5.89e-01 5.85e-01±3.36e-01 − 7.95e-01±4.77e-01 =
8 1.63e+08±2.34e+08 1.69e+07±1.48e+07 − 7.74e+06±1.22e+07 − 5.44e+01±1.19e+02 2.69e+01±5.13e+01 = 8.56e+00±1.76e+01 −
9 8.73e+07±1.06e+08 9.25e+06±1.82e+07 − 1.73e+06±2.58e+06 − 5.89e+03±1.75e+04 7.03e+02±1.96e+03 = 2.79e+02±1.03e+03 =

10 1.31e+07±1.34e+07 3.86e+06±4.08e+06 − 1.32e+06±1.79e+06 − 1.98e+06±1.36e+06 6.21e+05±4.34e+05 − 2.43e+05±1.41e+05 −
11 1.93e+04±1.23e+04 7.43e+03±3.76e+03 − 2.90e+03±2.19e+03 − 1.46e+04±6.52e+03 4.84e+03±1.87e+03 − 2.18e+03±9.81e+02 −
12 1.03e+10±1.08e+10 2.71e+09±2.51e+09 − 1.35e+09±1.17e+09 − 6.34e+05±1.23e+06 5.65e+04±1.09e+05 − 9.00e+03±1.69e+04 −
13 8.12e+03±3.60e+03 4.77e+03±1.60e+03 − 3.23e+03±1.64e+03 − 1.01e+01±1.24e+01 7.80e+00±1.26e+01 = 6.23e+00±5.88e+00 =
14 1.34e+03±1.13e+03 3.38e+02±2.71e+02 − 1.64e+02±1.57e+02 − 3.63e+01±3.88e+01 2.61e+00±4.26e+00 − 4.40e-01±1.32e+00 −
15 3.19e+04±3.09e+04 9.20e+03±9.04e+03 − 4.05e+03±3.14e+03 − 4.18e+01±5.85e+00 3.93e+01±7.51e+00 = 4.08e+01±7.56e+00 =
16 1.39e+03±1.30e+03 3.84e+02±2.82e+02 − 1.48e+02±2.12e+02 − 1.41e+01±2.57e+00 1.42e+01±2.30e+00 = 1.32e+01±2.40e+00 =
17 3.70e+04±5.08e+04 8.16e+03±6.93e+03 − 1.84e+03±2.96e+03 − 1.43e-01±2.50e-01 7.52e-02±1.47e-01 = 1.01e-01±1.99e-01 =
18 3.68e+04±3.68e+04 9.48e+03±1.12e+04 − 2.57e+03±2.26e+03 − 1.46e+00±1.96e+00 1.13e+00±1.15e+00 = 8.12e-01±8.15e-01 =
19 1.34e+04±1.88e+04 4.53e+03±6.67e+03 − 4.56e+02±7.72e+02 − 4.10e+00±1.53e+00 3.68e+00±9.17e-01 = 3.42e+00±8.99e-01 −
20 2.71e+06±2.78e+06 7.79e+05±6.48e+05 − 2.77e+05±1.72e+05 − 7.48e-01±4.17e-01 6.98e-01±3.26e-01 = 5.85e-01±2.45e-01 =
21 1.61e+03±1.32e+03 4.58e+02±3.49e+02 − 2.29e+02±1.82e+02 − 4.49e+00±1.93e+00 5.21e+00±6.14e+00 = 1.54e+00±2.28e-01 −
22 9.99e+02±9.83e+02 3.66e+02±3.99e+02 − 2.28e+02±2.11e+02 − 7.41e+00±1.03e+01 7.23e+00±1.06e+01 = 5.40e+00±7.40e+00 =
23 1.30e+03±1.23e+03 4.69e+02±3.89e+02 − 1.54e+02±1.74e+02 − 2.08e+00±3.76e-01 2.00e+00±3.13e-01 = 1.91e+00±3.75e-01 =
24 1.28e+07±1.26e+07 4.33e+06±4.50e+06 − 1.40e+06±1.41e+06 − 4.83e+01±7.35e+00 4.81e+01±5.96e+00 = 4.53e+01±7.46e+00 =

TABLE II: Error and error standard deviation for population initialization intervals [-40,40], [-60,60], and [-100,100]; D=100 and NP={6,100}.

F
NP =6 NP =100

[-100,100] [-60,60] [-40,40] [-100,100] [-60,60] [-40,40]
Error Error W Error W Error Error W Error W

1 1.09e+05±1.86e+04 3.94e+04±4.98e+03 − 1.83e+04±2.29e+03 − 3.81e+03±1.14e+03 1.45e+03±3.55e+02 − 6.12e+02±1.37e+02 −
2 3.58e+09±1.07e+09 1.29e+09±5.30e+08 − 6.35e+08±2.24e+08 − 2.20e+07±7.08e+06 8.62e+06±3.79e+06 − 3.61e+06±1.37e+06 −
3 2.37e+09±4.64e+09 1.70e+07±1.58e+07 − 1.49e+06±1.37e+06 − 2.87e+05±1.16e+05 4.63e+04±6.57e+03 − 1.56e+04±4.81e+03 −
4 1.58e+07±2.69e+06 4.81e+06±9.47e+05 − 1.83e+06±3.08e+05 − 3.47e+05±9.50e+04 1.03e+05±4.02e+04 − 2.53e+04±1.16e+04 −
5 3.32e+03±6.80e+02 2.26e+03±3.30e+02 − 1.72e+03±3.73e+02 − 1.00e-08±0.00e+00 1.00e-08±0.00e+00 = 1.00e-08±0.00e+00 =
6 1.19e+08±3.73e+07 5.09e+07±1.67e+07 − 2.64e+07±8.58e+06 − 3.64e+05±8.49e+04 1.57e+05±4.42e+04 − 6.96e+04±1.43e+04 −
7 7.40e+05±1.19e+05 2.54e+05±5.12e+04 − 1.08e+05±2.30e+04 − 9.68e+04±2.95e+04 3.92e+04±7.45e+03 − 1.72e+04±3.23e+03 −
8 7.88e+10±1.95e+10 1.02e+10±2.60e+09 − 2.17e+09±3.93e+08 − 1.12e+09±4.02e+08 1.19e+08±4.85e+07 − 2.74e+07±1.13e+07 −
9 7.66e+10±2.51e+10 9.91e+09±2.03e+09 − 1.86e+09±5.50e+08 − 3.23e+08±1.57e+08 4.72e+07±2.14e+07 − 1.04e+07±5.39e+06 −

10 1.83e+09±6.90e+08 6.90e+08±2.15e+08 − 2.89e+08±8.63e+07 − 1.62e+09±5.14e+08 5.76e+08±1.59e+08 − 2.66e+08±8.30e+07 −
11 3.92e+05±1.15e+05 1.13e+05±3.57e+04 − 5.49e+04±1.52e+04 − 3.41e+05±5.01e+04 1.09e+05±1.88e+04 − 5.10e+04±8.54e+03 −
12 6.20e+17±1.92e+18 6.32e+14±1.33e+15 = 6.81e+12±1.07e+13 = 2.21e+13±6.54e+13 6.98e+11±8.79e+11 = 8.32e+10±1.11e+11 =
13 6.42e+04±5.18e+03 3.91e+04±3.11e+03 − 2.56e+04±2.04e+03 − 1.76e+04±1.85e+03 1.05e+04±1.25e+03 − 6.64e+03±7.71e+02 −
14 6.52e+04±2.02e+04 1.69e+04±7.01e+03 − 6.82e+03±2.45e+03 − 3.63e+04±1.55e+04 6.89e+03±3.69e+03 − 2.63e+03±1.37e+03 −
15 5.00e+07±6.57e+07 2.18e+06±1.60e+06 − 3.93e+05±2.06e+05 − 1.15e+06±4.56e+05 2.08e+05±6.84e+04 − 4.81e+04±1.48e+04 −
16 8.99e+03±1.26e+03 2.77e+03±5.23e+02 − 1.03e+03±1.89e+02 − 2.58e+02±6.86e+01 1.27e+02±2.06e+01 − 9.80e+01±1.52e+01 −
17 2.78e+06±1.17e+06 5.14e+05±1.94e+05 − 1.45e+05±4.29e+04 − 4.61e+05±3.17e+05 2.41e+04±1.61e+04 − 1.37e+03±9.67e+02 −
18 3.07e+06±1.21e+06 7.00e+05±2.15e+05 − 1.77e+05±4.04e+04 − 9.41e+05±5.12e+05 6.07e+04±3.64e+04 − 3.49e+03±1.99e+03 −
19 1.99e+06±6.28e+05 2.26e+05±6.41e+04 − 4.88e+04±1.79e+04 − 8.28e+03±3.62e+03 1.06e+03±5.20e+02 − 2.06e+02±6.15e+01 −
20 1.49e+08±2.25e+07 5.43e+07±1.07e+07 − 2.31e+07±4.43e+06 − 5.92e+06±1.45e+06 1.65e+06±4.86e+05 − 5.76e+05±1.44e+05 −
21 8.49e+04±1.09e+04 2.73e+04±4.26e+03 − 9.61e+03±1.54e+03 − 1.56e+03±6.74e+02 3.53e+02±2.27e+02 − 1.32e+02±2.69e+01 −
22 9.06e+04±1.24e+04 2.56e+04±3.52e+03 − 9.18e+03±1.67e+03 − 1.55e+03±5.95e+02 3.46e+02±1.53e+02 − 1.31e+02±3.02e+01 −
23 8.32e+04±1.18e+04 2.62e+04±4.09e+03 − 9.13e+03±1.74e+03 − 1.45e+03±6.86e+02 2.80e+02±1.43e+02 − 5.39e+01±3.17e+01 −
24 8.44e+08±1.21e+08 2.56e+08±3.75e+07 − 9.72e+07±1.78e+07 − 1.55e+07±6.55e+06 3.06e+06±1.34e+06 − 4.60e+05±2.99e+05 −

[5] B. Kazimipour, X. Li, and A. Qin, “A review of population initialization
techniques for evolutionary algorithms,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on. IEEE, 2014, pp. 2585–2592.

[6] H. Salehinejad, “Micro-differential evolution: Diversity enhancement
and comparative study,” Ph.D. dissertation, University of Ontario In-
stitute of Technology, 2014.

[7] H. Salehinejad, R. Zadeh, R. Liscano, and S. Rahnamayan, “3d localiza-
tion in large-scale wireless sensor networks: A micro-differential evolu-
tion approach,” in 2014 IEEE 25th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communication (PIMRC). IEEE,
2014, pp. 1824–1828.

[8] R. W. Morrison, “Dispersion-based population initialization,” in Genetic
and Evolutionary ComputationGECCO 2003. Springer, 2003, pp.
1210–1221.

[9] S. Kimura and K. Matsumura, “Genetic algorithms using low-
discrepancy sequences,” in Proceedings of the 7th annual conference on
Genetic and evolutionary computation. ACM, 2005, pp. 1341–1346.

[10] Z. Ma and G. A. Vandenbosch, “Impact of random number generators
on the performance of particle swarm optimization in antenna design,”
in Antennas and Propagation (EUCAP), 2012 6th European Conference
on. IEEE, 2012, pp. 925–929.

[11] B. Kazimipour, X. Li, and A. Qin, “Initialization methods for large scale
global optimization,” in Evolutionary Computation (CEC), 2013 IEEE
Congress on. IEEE, 2013, pp. 2750–2757.

[12] M. Lanza, I. Barriuso, L. Valle, M. Domingo, J. Pérez, J. Basterrechea
et al., “Comparison of different pso initialization techniques for high di-
mensional search space problems: A test with fss and antenna arrays,” in
Antennas and Propagation (EUCAP), Proceedings of the 5th European
Conference on. IEEE, 2011, pp. 965–969.

[13] Y. Gao and Y.-J. Wang, “A memetic differential evolutionary algorithm
for high dimensional functions’ optimization,” in Natural Computation,
2007. ICNC 2007. Third International Conference on, vol. 4. IEEE,
2007, pp. 188–192.

[14] M. Ali, M. Pant, and A. Abraham, “Simplex differential evolution,” Acta



TABLE III: Error and error standard deviation for population initialization intervals [-40,40], [-60,60], and [-100,100]; D=1000 and NP={6,100}.

F
NP =6 NP =100

[-100,100] [-60,60] [-40,40] [-100,100] [-60,60] [-40,40]
Error Error W Error W Error Error W Error W

1 1.59e+06±1.04e+05 5.82e+05±4.05e+04 − 2.58e+05±1.80e+04 − 1.11e+06±7.31e+04 4.02e+05±2.48e+04 − 1.79e+05±1.23e+04 −
2 9.42e+10±1.16e+10 3.35e+10±4.39e+09 − 1.51e+10±1.46e+09 − 3.05e+10±3.13e+09 1.13e+10±9.98e+08 − 4.99e+09±4.38e+08 −
3 3.41e+11±3.13e+11 1.57e+09±9.18e+08 − 8.32e+07±3.49e+07 − 5.22e+10±4.67e+10 3.35e+08±1.70e+08 − 1.68e+07±5.32e+06 −
4 2.62e+08±2.17e+07 8.50e+07±7.18e+06 − 3.44e+07±2.97e+06 − 1.67e+08±1.11e+07 5.33e+07±3.26e+06 − 2.00e+07±1.66e+06 −
5 6.84e+04±4.28e+03 4.42e+04±1.80e+03 − 3.28e+04±1.60e+03 − 3.08e+04±1.64e+03 2.06e+04±1.15e+03 − 1.55e+04±7.81e+02 −
6 2.73e+09±1.61e+08 9.84e+08±9.23e+07 − 4.98e+08±4.50e+07 − 1.39e+09±1.35e+08 5.42e+08±4.18e+07 − 2.78e+08±2.23e+07 −
7 1.36e+07±1.05e+06 4.80e+06±4.37e+05 − 2.17e+06±1.73e+05 − 8.19e+06±6.13e+05 2.81e+06±1.79e+05 − 1.27e+06±8.57e+04 −
8 1.27e+14±1.69e+13 1.67e+13±1.68e+12 − 3.25e+12±3.88e+11 − 7.85e+13±1.06e+13 9.99e+12±1.08e+12 − 1.98e+12±2.90e+11 −
9 1.74e+14±2.62e+13 2.24e+13±4.07e+12 − 4.50e+12±6.35e+11 − 8.78e+13±1.12e+13 1.20e+13±1.38e+12 − 2.27e+12±2.62e+11 −

10 8.09e+10±9.13e+09 2.93e+10±3.81e+09 − 1.32e+10±1.83e+09 − 4.08e+10±4.09e+09 1.47e+10±1.70e+09 − 6.93e+09±7.87e+08 −
11 3.69e+06±6.56e+05 1.41e+06±3.60e+05 − 5.74e+05±1.44e+05 − 3.31e+06±4.26e+05 1.13e+06±1.21e+05 − 5.17e+05±5.43e+04 −
12 2.61e+25±7.49e+25 8.62e+19±8.11e+19 = 1.74e+17±3.95e+17 = 5.34e+26±8.76e+26 2.79e+21±4.64e+21 − 5.78e+17±5.32e+17 −
13 2.51e+05±1.13e+04 1.51e+05±6.95e+03 − 1.00e+05±4.38e+03 − 2.07e+05±5.86e+03 1.23e+05±3.60e+03 − 8.32e+04±2.15e+03 −
14 9.09e+05±1.37e+05 2.33e+05±3.98e+04 − 7.75e+04±1.18e+04 − 6.77e+05±1.16e+05 1.54e+05±3.15e+04 − 5.12e+04±1.02e+04 −
15 1.66e+11±1.66e+11 8.43e+08±5.15e+08 − 6.35e+07±2.96e+07 − 2.32e+11±2.19e+11 9.62e+08±6.38e+08 − 3.35e+07±1.22e+07 −
16 1.30e+04±1.20e+03 4.02e+03±3.28e+02 − 1.52e+03±1.36e+02 − 8.81e+03±6.08e+02 2.72e+03±1.96e+02 − 1.02e+03±5.75e+01 −
17 3.34e+08±4.48e+08 8.69e+06±4.32e+06 − 2.09e+06±4.12e+05 − 7.60e+09±7.69e+09 1.29e+07±3.23e+06 − 1.80e+06±2.10e+05 −
18 2.03e+09±1.72e+09 1.24e+07±4.57e+06 − 2.63e+06±4.48e+05 − 1.57e+10±2.17e+10 3.54e+07±2.05e+07 − 2.63e+06±5.49e+05 −
19 4.40e+08±6.98e+07 5.87e+07±9.91e+06 − 1.15e+07±1.92e+06 − 2.24e+08±3.47e+07 2.86e+07±3.38e+06 − 5.60e+06±5.25e+05 −
20 2.40e+09±1.43e+08 8.83e+08±6.91e+07 − 3.54e+08±2.21e+07 − 1.64e+09±1.15e+08 5.58e+08±3.54e+07 − 2.33e+08±1.72e+07 −
21 1.29e+06±1.19e+05 4.01e+05±3.05e+04 − 1.47e+05±1.38e+04 − 8.70e+05±3.65e+04 2.63e+05±1.29e+04 − 9.53e+04±6.37e+03 −
22 1.29e+06±1.09e+05 3.90e+05±2.54e+04 − 1.43e+05±1.15e+04 − 8.89e+05±6.51e+04 2.72e+05±1.74e+04 − 9.32e+04±6.72e+03 −
23 4.41e+35±1.43e+35 6.35e+24±2.33e+34 = 8.24e+35±3.63e+35 = 9.21e+35±1.53e+34 2.65e+35±4.33e+34 = 1.11e+35±3.43e+34 =
24 1.25e+10±1.08e+09 3.85e+09±3.15e+08 − 1.44e+09±1.13e+08 − 8.87e+09±6.97e+08 2.60e+09±2.20e+08 − 9.37e+08±6.34e+07 −

TABLE IV: Summary of Wilcoxon statistical test for population initialization
interval [-100,100] versus [-60,60] and [-40,40], with NP = {6, 100}, and
for D = {10, 100, 1000}.

NP 6 100
Interval [-60,60] [-40,40] [-60,60] [-40,40]

HHH
HHD
W − = + − = + − = + − = +

10 21 3 0 21 3 0 7 17 0 10 14 0
100 23 1 0 23 1 0 22 2 0 22 2 0

1000 22 2 0 22 2 0 23 1 0 23 1 0

Polytechnica Hungarica, vol. 6, no. 5, pp. 95–115, 2009.
[15] Y. Xu, L. Wang, and L. Li, “An effective hybrid algorithm based

on simplex search and differential evolution for global optimization,”
in Emerging Intelligent Computing Technology and Applications. With
Aspects of Artificial Intelligence. Springer, 2009, pp. 341–350.

[16] R. A. Khanum and M. A. Jan, “Centroid-based initialized jade for
global optimization,” in Computer Science and Electronic Engineering
Conference (CEEC), 2011 3rd. IEEE, 2011, pp. 115–120.

[17] I. H. Sloan and S. Joe, Lattice methods for multiple integration. Oxford
University Press, 1994.

[18] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random initial
population for genetic algorithms,” Computers & Mathematics with
Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

[19] A. Esmailzadeh and S. Rahnamayan, “Center-point-based simulated
annealing,” in Electrical & Computer Engineering (CCECE), 2012 25th
IEEE Canadian Conference on. IEEE, 2012, pp. 1–4.

[20] W. J. Morokoff and R. E. Caflisch, “Quasi-random sequences and their
discrepancies,” SIAM Journal on Scientific Computing, vol. 15, no. 6,
pp. 1251–1279, 1994.

[21] M. Pant, M. Ali, and V. Singh, “Differential evolution using quadratic
interpolation for initializing the population,” in Advance Computing
Conference, 2009. IACC 2009. IEEE International. IEEE, 2009, pp.
375–380.

[22] K. Parsopoulos and M. Vrahatis, “Initializing the particle swarm op-
timizer using the nonlinear simplex method,” Advances in intelligent
systems, fuzzy systems, evolutionary computation, vol. 216, pp. 1–6,
2002.

[23] M. Ali, M. Pant, and A. Abraham, “Unconventional initialization meth-
ods for differential evolution,” Applied Mathematics and Computation,
vol. 219, no. 9, pp. 4474–4494, 2013.

[24] V. V. de Melo and A. C. B. Delbem, “Investigating smart sampling as a
population initialization method for differential evolution in continuous
problems,” Information Sciences, vol. 193, pp. 36–53, 2012.

[25] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the
flexible job-shop scheduling problem,” Expert Systems with Applica-
tions, vol. 38, no. 4, pp. 3563–3573, 2011.

[26] R. Kumar, S. Narula, and R. Kumar, “A population initialization method
by memetic algorithm,” International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 4, 2013.

[27] H. Salehinejad, S. Rahnamayan, and H. R. Tizhoosh, “Type-ii
opposition-based differential evolution,” in 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2014, pp. 1768–1775.

[28] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition versus
randomness in soft computing techniques,” Applied Soft Computing,
vol. 8, no. 2, pp. 906–918, 2008.

[29] S. Rahnamayan, G. G. Wang, and M. Ventresca, “An intuitive distance-
based explanation of opposition-based sampling,” Applied Soft Comput-
ing, vol. 12, no. 9, pp. 2828–2839, 2012.

[30] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Quasi-oppositional
differential evolution,” in Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on. IEEE, 2007, pp. 2229–2236.

[31] A. Esmailzadeh and S. Rahnamayan, “Enhanced differential evolution
using center-based sampling,” in Evolutionary Computation (CEC), 2011
IEEE Congress on. IEEE, 2011, pp. 2641–2648.

[32] S. Rahnamayan, J. Jesuthasan, F. Bourennani, G. F. Naterer, and H. Sale-
hinejad, “Centroid opposition-based differential evolution,” International
Journal of Applied Metaheuristic Computing (IJAMC), vol. 5, no. 4, pp.
1–25, 2014.

[33] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, and G. F.
Naterer, “Computing opposition by involving entire population,” in
Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE,
2014, pp. 1800–1807.

[34] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-
of-the-art,” Evolutionary Computation, IEEE Transactions on, vol. 15,
no. 1, pp. 4–31, 2011.

[35] S. Rahnamayan and G. G. Wang, “Center-based sampling for population-
based algorithms,” in Evolutionary Computation, 2009. CEC’09. IEEE
Congress on. IEEE, 2009, pp. 933–938.

[36] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2010: Noiseless functions definitions,”
2010-compiled 2014.


